Représentations d ’ images pour la reconnaissance de formes
نویسندگان
چکیده
One of the main requirements in many signal processing applications is to have a “meaningful representation” in which signal’s characteristics are readily apparent. For example, for recognition, the representation should highlight salient features; for denoising, it should efficiently separate signal and noise; and for compression, it should capture a large part of signal using only a few coefficients. Interestingly, despite these seemingly different goals, good performance of signal processing applications generally has roots in the appropriateness of the adopted representations. Representing a signal involves the design of a set of elementary generating signals, or a dictionary of atoms, which is used to decompose the signal. For many years, dictionary design has been pursued by many researchers for various fields of applications: Fourier transform was proposed to solve the heat equation; Radon transform was created for the reconstruction problem; wavelet transform was developed for piece-wise smooth, one-dimensional signals with a finite number of discontinuities; and contourlet transform was designed to efficiently represent two-dimensional signals made of smooth regions separated by smooth boundaries, etc. For the developed dictionaries up to the present time, they can be roughly classified into two families: mathematical models of the data and sets of realizations of the data. Dictionaries of the first family are characterized by analytical formulations, which can sometimes be fast implemented. The representation coefficients of a signal in one dictionary are obtained by performing signal transform. Dictionaries of the second family, which are often general overcomplete, deliver greater flexibility and the ability to adapt to specific signal data. They are the results of much more recent dictionary designing approaches where dictionaries are learned from data for their representation. The existence of many dictionaries naturally leads to the problem of selecting the most appropriate one for the representation of signals in a certain situation. The selected dictionary should have distinguished and beneficial properties which are preferable in the targeted applications. Speaking differently, it is the actual application that controls the selection of dictionary, not the reverse. In the framework of this thesis, three types of dictionaries, which correspond to three types of transforms/representations, will be studied for their applicability in some image analysis and pattern recognition tasks. They are the Radon transform, unit disk-based moments, and sparse representation. The Radon transform and unit disk-based moments are for invariant pattern recognition problems, whereas sparse representation for image denoising, separation, and classification problems. This thesis contains a number of theoretical contributions which are accompanied by numerous validating experimental results. For the Radon transform, it discusses possible directions that can be followed to define invariant pattern descriptors, leading to the proposal of two descriptors that are totally invariant to rotation, scaling, and translation. For unit disk-based moments, it presents a unified view on strategies that have been used to define unit disk-based orthogonal moments, leading to the proposal of four generic polar harmonic moments and strategies for their fast computation. For sparse representation, it uses sparsity-based techniques for denoising and separation of graphical document images and proposes a representation framework that balances the three criteria sparsity, reconstruction error, and discrimination power for classification.
منابع مشابه
Plongement incrémental dans un contexte de dissimilarité
RÉSUMÉ. Le domaine de la reconnaissance statistique de formes est basé sur la représentation numérique des objets et peut donc être facilement combiné avec des méthodes d’apprentissage automatique. D’autre part, la reconnaissance structurelle de formes utilise un ensemble limité de méthodes d’apprentissage automatique mais encode une riche description des objets via les chaînes de caractères ou...
متن کاملAnalyse automatique de textes par un Systeme d'etats finis
Toute proc6dure de reconnaissance ou de g6n6ration automatique de langues naturelles, c'est-~t-dire toute proc6dure qui fair passer d'un niveau de langue ~t un autre niveau, repose sur la notion de module. Le module lui-m~me comporte deux facettes, l'une est le type logique caract6ris6 par une classe de languages reconnus et traduits, l'autre, est le contenu concret des donndes linguistiques de...
متن کاملOverlap-add methods for time-scaling of speech
In this tutorial on time scaling we follow one particular line of thought towards computationally efficient high quality methods. We favor time scaling based on time-frequency representations over model based approaches, and proceed to review an iterative phase reconstruction method for time-scaled magnitude spectrograms. The search for a good initial phase estimate leads us to consider synchro...
متن کاملIntégration de plusieurs formes de représentations spatiales dans un modèle de simulation
Résumé. L’étude de l’évolution d’un système complexe spatialisé devient critique dans de nombreux domaines. Par exemple, pour comprendre l’influence de l’homme sur le ruissellement dans les entités spatiales et selon leurs types d’occupation du sol (culture, urbanisation, habitation...) de manière à permettre aux décideurs d’anticiper les politiques d’urbanisme et d’agriculture. Dans cette démo...
متن کاملcoMPutation-FriendlY sHaPe graMMars Detailed by a sub-framework over parametric 2D rectangular shapes
NP-hardness of parametric subshape recognition for an arbitrary number of open terms is proven. Guided by this under standing of the complexity of subshape recognition, a framework for computation-friendly parametric shape grammar interpreters is proposed, which is further detailed by a sub-framework over parametric twodimensional rectangular shapes. As both the proof of NP-hardness and rectang...
متن کاملDu quatrième de proportion comme principe inductif : une proposition et son application à l'apprentissage de la morphologie
RÉSUMÉ. Nous présentons un modèle d’apprentissage par analogie qui exploite la notion de proportions analogiques formelles ; cette approche présuppose de savoir donner un sens à ces proportions et de pouvoir implanter efficacement leur calcul. Nous proposons une définition algébrique de cette notion, valable pour les structures utilisées couramment pour les représentations linguistiques : mots ...
متن کامل